单细胞交响乐
  • 前言:我与《单细胞交响乐》的缘分
  • 1 准备篇:背景知识
    • 1.1 数据结构
    • 1.2 总览 | 从实验到分析
  • 2 积累篇:文献阅读
    • 2.1.1 综述 | 2019-单细胞转录组分析最佳思路
    • 2.1.2 综述 | 2018-单细胞捕获平台
    • 2.1.3 综述 | 2017-scRNA中的细胞聚类分群
    • 2.1.4 综述 | scRNA已经开发出超过1000款工具了,你用过几种?
    • 2.1.5 综述 | 2021-单细胞测序的微流控技术应用
    • 2.2.1 研究 | 2018-单细胞转录组探索癌症免疫治疗获得性抗性机理
    • 2.2.2 研究 | 2018-人类结直肠癌单细胞多组学分析
    • 2.2.3 研究 | 2020-单细胞分析揭示葡萄膜黑色素瘤新的进化复杂性
    • 2.2.4 研究 | 2020-COVID-19病人支气管免疫细胞单细胞测序分析
    • 2.2.5 研究 | 2020-原汁原味读--单细胞肿瘤免疫图谱
    • 2.2.6 研究 | 2021-多发性骨髓瘤发展过程中肿瘤和免疫细胞的共同进化
    • 2.2.7 研究 | 2021-多个组织的成纤维细胞图谱
    • 2.2.8 研究 | 2021-多组学分析肺结核队列的记忆T细胞状态
    • 2.2.9 研究 | 2021-CancerSCEM: 人类癌症单细胞表达图谱数据库
    • 2.2.10 研究| 2021-单细胞转录组分析COVID-19重症患者肺泡巨噬细胞亚型
    • 2.2.11 研究 |2021-单细胞转录组揭示肺腺癌特有的肿瘤微环境
    • 2.2.12 研究 | 2021-单细胞转录组揭示乳头状甲状腺癌起始与发展
    • 2.2.13 研究 | 2021-解析食管鳞癌化疗病人的单细胞转录组
    • 2.2.14 研究 | 2021-单细胞水平看骨髓瘤的细胞状态和基因调控
    • 2.3.1 算法|2020-BatchBench比较scRNA批次矫正方法
    • 2.3.2 算法 | 2021-scPhere——用地球仪来展示降维结果
    • 2.3.3 算法 | 2021-单细胞差异分析方法评测
    • 2.3.4 算法 | 2021-细胞分群新方法——CNA(co-varying neighborhood analysis)
    • 2.3.5 工具 | 2018-iSEE:单细胞数据可视化辅助网页工具
    • 2.3.6 工具 | 2021-MACA: 一款自动注释细胞类型的工具
    • 2.3.7 工具 | 2021-一个很有想法的工具——Ikarus,想要在单细胞水平直接鉴定肿瘤细胞
  • 3 流程篇:分析框架
    • 3.1 质控
    • 3.2 归一化
    • 3.3 挑选表达量高变化基因
    • 3.4 降维
    • 3.5 聚类
    • 3.6 Marker/标记基因检测
    • 3.7 细胞类型注释
    • 3.8 批次效应处理
    • 3.9 多样本间差异分析
    • 3.10 检测Doublet
    • 3.11 细胞周期推断
    • 3.12 细胞轨迹推断
    • 3.13 与蛋白丰度信息结合
    • 3.14 处理大型数据
    • 3.15 不同R包数据的相互转换
  • 4 实战篇:活学活用
    • 4.1 实战一 | Smart-seq2 | 小鼠骨髓
    • 4.2 实战二 | STRT-Seq | 小鼠大脑
    • 4.3 实战三 | 10X | 未过滤的PBMC
    • 4.4 实战四 | 10X | 过滤后的PBMC
    • 4.5 实战五 | CEL-seq2 | 人胰腺细胞
    • 4.6 实战六 | CEL-seq | 人胰腺细胞
    • 4.7 实战七 | SMARTer | 人胰腺细胞
    • 4.8 实战八 | Smart-seq2 | 人胰腺细胞
    • 4.9 实战九 | 不同技术数据整合 | 人胰腺细胞
    • 4.10 实战十 | CEL-seq | 小鼠造血干细胞
    • 4.11 实战十一 | Smart-seq2 | 小鼠造血干细胞
    • 4.12 实战十二 | 10X | 小鼠嵌合体胚胎
    • 4.13 实战十三 | 10X | 小鼠乳腺上皮细胞
    • 4.14 | 实战十四 | 10X | HCA计划的38万骨髓细胞
  • 5 补充篇:开拓思路
    • 5.1 10X Genomics概述
      • 5.1.1 10X Genomics 问题集锦
    • 5.2 CellRanger篇
      • 5.2.1 CellRanger实战(一)数据下载
      • 5.2.2 CellRanger实战(二) 使用前注意事项
      • 5.2.3 CellRanger实战(三) 使用初探
      • 5.2.4 CellRanger实战(四)流程概览
      • 5.2.5 CellRanger实战(五) 理解count输出的结果
    • 5.3 Seurat的使用
      • 5.3.1 Seurat V3 | 实战之2700 PBMCs分析
      • 5.3.2 Seurat V3 | 如何改造Seurat包的DoHeatmap函数?
      • 5.3.3 scRNA的3大R包对比
      • 5.3.4 Seurat两种数据比较:integrated vs RNA assay
      • 5.3.5 seurat 的几种findmaker比较
    • 5.4 Monocle的使用
      • 5.4.1 Monocle V3实战
    • 5.5 多个数据集的整合
      • 5.5.1 使用Seurat的merge功能进行整合
      • 5.5.2 如何使用sctransform去除批次效应
由 GitBook 提供支持
在本页
  • 前言
  • 如何用Pheatmap画这个结果?
  • 第1步:得到表达矩阵
  • 第2步:得到小的top10表达矩阵
  • 第3步:做一个列的注释
  • 除了pheatmap,当然还能用其他的包

这有帮助吗?

  1. 5 补充篇:开拓思路
  2. 5.3 Seurat的使用

5.3.2 Seurat V3 | 如何改造Seurat包的DoHeatmap函数?

刘小泽写于19.12.4

上一页5.3.1 Seurat V3 | 实战之2700 PBMCs分析下一页5.3.3 scRNA的3大R包对比

最后更新于4年前

这有帮助吗?

分析过单细胞数据的小伙伴应该都使用过Seurat包,其中有个函数叫DoHeatmap,具体操作可以看:

前言

走完Seurat流程,会得到分群结果FindClusters(),并找到marker基因FindAllMarkers(),然后想要对每群的前10个marker基因进行热图可视化

rm(list = ls()) 
options(warn=-1) 
options(stringsAsFactors = F)

install.packages('Seurat')
library(Seurat)
library(stringr)   
library(dplyr)  

load('sce_out_for_heatmap_all.Rdata')
top10 <- sce.markers %>% group_by(cluster) %>% top_n(10, avg_logFC)
DoHeatmap(sce,top10$gene,size=3)
plot_zoom_png

但是这个图在后期调整时会遇到很多障碍,因此最好用pheatmap重新画一下

如何用Pheatmap画这个结果?

其实,画一个热图最重要的是表达矩阵和分组信息

第1步:得到表达矩阵

那么现在有了sce对象,从中提取表达矩阵也不难

# 提取原始表达矩阵
cts <- GetAssayData(sce, slot = "counts")
> cts[1:4,1:4]
4 x 4 sparse Matrix of class "dgCMatrix"
               A1_01 A1_10 A1_11 A1_12
00R-AC107638.2      .      2      .      2
0610005C13Rik       .      .      .      .
0610007P14Rik       1     49      3    328
0610009B22Rik       .     12      .     78
# 然后对这个矩阵取log
cts <- log10(cts + 1)

第2步:得到小的top10表达矩阵

当然不能使用整个表达矩阵进行处理,可以直接使用Seurat得到的top10结果,它帮我们得到了每个cluster的marker基因,而我们只需要取出这个小表达矩阵即可

Seurat得到的top10计算结果是这样,那么矩阵的行就按基因名取:

因为这个热图结果是按照cluster进行排序展示的,因此我们也要将小表达矩阵的列按cluster从小到大排序:

# 原来的cluster分组信息存储在 sce$seurat_clusters 中
> head(sce$seurat_clusters)
A1_01 A1_10 A1_11 A1_12 A1_13 A1_14 
     4      4      4      4      4      4 
Levels: 0 1 2 3 4 5 6 7 8
# 可见并不是从第0个cluster开始的

# 排序之后
new_cluster <- sort(sce$seurat_clusters)
> head(new_cluster)
A10_09 A10_16 A10_18 A10_33 A10_36 A10_42 
      0       0       0       0       0       0 
Levels: 0 1 2 3 4 5 6 7 8

👌有了行和列的规定,我们就能很轻松地提取出整个小的表达矩阵:

cts <- as.matrix(cts[top10$gene, names(new_cluster)])

第3步:做一个列的注释

因为要做出来DoHeatmap的顶部0-8 cluster的展示,需要使用pheatmap的一个参数:annotation_col

这个参数接收一个数据框作为输入。因为是对列进行注释,所以这个数据框的行是矩阵的列名,而它的列在这里对应的就是cluster分群信息

ac=data.frame(cluster=new_cluster)
rownames(ac)=colnames(mat)
> head(ac)
        cluster
A10_09       0
A10_16       0
A10_18       0
A10_33       0
A10_36       0
A10_42       0

最后,就可以画图了:

library(pheatmap)
pheatmap(cts,show_colnames =F,show_rownames = T,
         cluster_rows = F,
         cluster_cols = F,
         annotation_col=ac)

当然,这个pheatmap有很多参数可以调整,看它的参数就知道:

比如想加上每个cluster的分隔,需要用到参数gaps_col = ,不过需要提供每个cluster最后一个细胞的序号

【当然这个是后话了,最重要的是知道如何进行数据的转换】

除了pheatmap,当然还能用其他的包

画热图的包有很多,其中一个比较常用的就是ComplexHeatmap

例如:

BiocManager::install("ComplexHeatmap")
library(ComplexHeatmap)

# 列标题的颜色框
color <- rainbow(9)
names(color) <- levels(new_cluster)
top_color <- HeatmapAnnotation(
  cluster = anno_block(gp = gpar(fill = color), 
                       labels = levels(new_cluster), 
                       labels_gp = gpar(cex = 0.5, col = "white"))) 

Heatmap(mat,
        cluster_rows = FALSE,
        cluster_columns = FALSE,
        show_column_names = FALSE,
        show_row_names = TRUE,
        column_split = new_cluster,
        heatmap_legend_param = list(
          title = "log10(count+1)",
          title_position = "leftcenter-rot"
        ),
        top_annotation = top_anno,
        column_title = NULL)

也可以实现列的注释,并且将每个cluster的列都进行分隔,和DoHeatmap的结果更像

plot_zoom_png-2
plot_zoom_png-3
单细胞转录组学习笔记-17-用Seurat包分析文章数据