4.4 实战四 | 10X | 过滤后的PBMC
刘小泽写于2020.7.19
1 前言
准备数据
library(TENxPBMCData)
all.sce <- list(
pbmc3k=TENxPBMCData('pbmc3k'),
pbmc4k=TENxPBMCData('pbmc4k'),
pbmc8k=TENxPBMCData('pbmc8k')
)
all.sce
# $pbmc3k
# class: SingleCellExperiment
# dim: 32738 2700
# metadata(0):
# assays(1): counts
# rownames(32738): ENSG00000243485 ENSG00000237613 ...
# ENSG00000215616 ENSG00000215611
# rowData names(3): ENSEMBL_ID Symbol_TENx Symbol
# colnames: NULL
# colData names(11): Sample Barcode ... Individual
# Date_published
# reducedDimNames(0):
# altExpNames(0):
#
# $pbmc4k
# class: SingleCellExperiment
# dim: 33694 4340
# metadata(0):
# assays(1): counts
# rownames(33694): ENSG00000243485 ENSG00000237613 ...
# ENSG00000277475 ENSG00000268674
# rowData names(3): ENSEMBL_ID Symbol_TENx Symbol
# colnames: NULL
# colData names(11): Sample Barcode ... Individual
# Date_published
# reducedDimNames(0):
# altExpNames(0):
#
# $pbmc8k
# class: SingleCellExperiment
# dim: 33694 8381
# metadata(0):
# assays(1): counts
# rownames(33694): ENSG00000243485 ENSG00000237613 ...
# ENSG00000277475 ENSG00000268674
# rowData names(3): ENSEMBL_ID Symbol_TENx Symbol
# colnames: NULL
# colData names(11): Sample Barcode ... Individual
# Date_published
# reducedDimNames(0):
# altExpNames(0):2 批量质控
数据备份
看一下根据线粒体过滤的结果
批量作图(也是把作图结果放进list,方便后期批量导出)

3 批量归一化
4 批量找表达量高变化基因

5 批量降维
6 批量聚类

7 数据整合
找共有基因
对每个数据批量取子集
把三个数据当做一个数据的三个批次,重新进行归一化
根据重新归一化的结果,再次找HVGs
对一个大数据进行降维
对一个大数据进行聚类
可视化

最后更新于