单细胞交响乐
  • 前言:我与《单细胞交响乐》的缘分
  • 1 准备篇:背景知识
    • 1.1 数据结构
    • 1.2 总览 | 从实验到分析
  • 2 积累篇:文献阅读
    • 2.1.1 综述 | 2019-单细胞转录组分析最佳思路
    • 2.1.2 综述 | 2018-单细胞捕获平台
    • 2.1.3 综述 | 2017-scRNA中的细胞聚类分群
    • 2.1.4 综述 | scRNA已经开发出超过1000款工具了,你用过几种?
    • 2.1.5 综述 | 2021-单细胞测序的微流控技术应用
    • 2.2.1 研究 | 2018-单细胞转录组探索癌症免疫治疗获得性抗性机理
    • 2.2.2 研究 | 2018-人类结直肠癌单细胞多组学分析
    • 2.2.3 研究 | 2020-单细胞分析揭示葡萄膜黑色素瘤新的进化复杂性
    • 2.2.4 研究 | 2020-COVID-19病人支气管免疫细胞单细胞测序分析
    • 2.2.5 研究 | 2020-原汁原味读--单细胞肿瘤免疫图谱
    • 2.2.6 研究 | 2021-多发性骨髓瘤发展过程中肿瘤和免疫细胞的共同进化
    • 2.2.7 研究 | 2021-多个组织的成纤维细胞图谱
    • 2.2.8 研究 | 2021-多组学分析肺结核队列的记忆T细胞状态
    • 2.2.9 研究 | 2021-CancerSCEM: 人类癌症单细胞表达图谱数据库
    • 2.2.10 研究| 2021-单细胞转录组分析COVID-19重症患者肺泡巨噬细胞亚型
    • 2.2.11 研究 |2021-单细胞转录组揭示肺腺癌特有的肿瘤微环境
    • 2.2.12 研究 | 2021-单细胞转录组揭示乳头状甲状腺癌起始与发展
    • 2.2.13 研究 | 2021-解析食管鳞癌化疗病人的单细胞转录组
    • 2.2.14 研究 | 2021-单细胞水平看骨髓瘤的细胞状态和基因调控
    • 2.3.1 算法|2020-BatchBench比较scRNA批次矫正方法
    • 2.3.2 算法 | 2021-scPhere——用地球仪来展示降维结果
    • 2.3.3 算法 | 2021-单细胞差异分析方法评测
    • 2.3.4 算法 | 2021-细胞分群新方法——CNA(co-varying neighborhood analysis)
    • 2.3.5 工具 | 2018-iSEE:单细胞数据可视化辅助网页工具
    • 2.3.6 工具 | 2021-MACA: 一款自动注释细胞类型的工具
    • 2.3.7 工具 | 2021-一个很有想法的工具——Ikarus,想要在单细胞水平直接鉴定肿瘤细胞
  • 3 流程篇:分析框架
    • 3.1 质控
    • 3.2 归一化
    • 3.3 挑选表达量高变化基因
    • 3.4 降维
    • 3.5 聚类
    • 3.6 Marker/标记基因检测
    • 3.7 细胞类型注释
    • 3.8 批次效应处理
    • 3.9 多样本间差异分析
    • 3.10 检测Doublet
    • 3.11 细胞周期推断
    • 3.12 细胞轨迹推断
    • 3.13 与蛋白丰度信息结合
    • 3.14 处理大型数据
    • 3.15 不同R包数据的相互转换
  • 4 实战篇:活学活用
    • 4.1 实战一 | Smart-seq2 | 小鼠骨髓
    • 4.2 实战二 | STRT-Seq | 小鼠大脑
    • 4.3 实战三 | 10X | 未过滤的PBMC
    • 4.4 实战四 | 10X | 过滤后的PBMC
    • 4.5 实战五 | CEL-seq2 | 人胰腺细胞
    • 4.6 实战六 | CEL-seq | 人胰腺细胞
    • 4.7 实战七 | SMARTer | 人胰腺细胞
    • 4.8 实战八 | Smart-seq2 | 人胰腺细胞
    • 4.9 实战九 | 不同技术数据整合 | 人胰腺细胞
    • 4.10 实战十 | CEL-seq | 小鼠造血干细胞
    • 4.11 实战十一 | Smart-seq2 | 小鼠造血干细胞
    • 4.12 实战十二 | 10X | 小鼠嵌合体胚胎
    • 4.13 实战十三 | 10X | 小鼠乳腺上皮细胞
    • 4.14 | 实战十四 | 10X | HCA计划的38万骨髓细胞
  • 5 补充篇:开拓思路
    • 5.1 10X Genomics概述
      • 5.1.1 10X Genomics 问题集锦
    • 5.2 CellRanger篇
      • 5.2.1 CellRanger实战(一)数据下载
      • 5.2.2 CellRanger实战(二) 使用前注意事项
      • 5.2.3 CellRanger实战(三) 使用初探
      • 5.2.4 CellRanger实战(四)流程概览
      • 5.2.5 CellRanger实战(五) 理解count输出的结果
    • 5.3 Seurat的使用
      • 5.3.1 Seurat V3 | 实战之2700 PBMCs分析
      • 5.3.2 Seurat V3 | 如何改造Seurat包的DoHeatmap函数?
      • 5.3.3 scRNA的3大R包对比
      • 5.3.4 Seurat两种数据比较:integrated vs RNA assay
      • 5.3.5 seurat 的几种findmaker比较
    • 5.4 Monocle的使用
      • 5.4.1 Monocle V3实战
    • 5.5 多个数据集的整合
      • 5.5.1 使用Seurat的merge功能进行整合
      • 5.5.2 如何使用sctransform去除批次效应
由 GitBook 提供支持
在本页
  • 速览
  • 图1
  • 图2
  • 图3

这有帮助吗?

  1. 2 积累篇:文献阅读

2.1.4 综述 | scRNA已经开发出超过1000款工具了,你用过几种?

刘小泽写于2021.8.24

上一页2.1.3 综述 | 2017-scRNA中的细胞聚类分群下一页2.1.5 综述 | 2021-单细胞测序的微流控技术应用

最后更新于3年前

这有帮助吗?

速览

  • 题目:Over 1000 tools reveal trends in the single-cell RNA-seq analysis landscape

  • 日期:2021.8.14

  • 链接:

  • 工具列表:

图1

  • 这个网页从2016年开始搜集scRNA的分析工具,截止到2021.8.12,搜集了1027款

  • 从2018年开始,增速明显,按这个趋势到2022年预计会有1500款,2025年会有3000款

  • 大约三分之二的工具至少有一篇peer-review的文章,四分之一有预印本

  • 可视化、降维聚类是工具开发的前沿阵地,像是多样本整合、轨迹推断也逐渐成为了标准流程,不过更高级的分析比如罕见细胞类型鉴定、可变剪切工具还较少

  • 目前的多面手主要是seurat、scanpy,更多的工具主要集中在某一种或某几种分析

图2

  • R工具目前还是居多,但越来越多的工具采用python开发,而基于R的开发数量正在下降;因为单细胞数据量和复杂度都在逐步提高,而性能方面的优势使得python逐渐提升

  • 另一个因素在于:曾经的bulk RNASeq一般都是生命科学领域的研究人员关注,解决的也是生物问题;而scRNA具有更高的探索性,因此有时在降维聚类等方面需要结合机器学习这种更加复杂的统计方法,所以计算科学领域的研究人员也逐渐加入,而python也是他们所常用的机器学习工具

  • 按这个速度推断,2025年中期python就会超过R,成为scRNA数据分析领域最为热门的语言

  • B图中可以看到红线上方的”潜力股工具“:integration和classification。早期受到测序条件和经费的限制,可能一个实验只能做一个样本或者很少几个样本,但现在大样本量逐渐成为趋势(比如最大的Human Cell Atlas),因此如何整合以及处理批次效应,就成了一个重点

图3

  • github成为scRNA工具开发的主阵地(超过90%),包括709个owner的960+个仓库,有超过1700个贡献者提交了超过150,000次

  • 可以看到,scRNA的文章预印本呈现增长趋势,方便更多的工具提前问世,让读者更快地提交issue帮助改进

随着研究逐渐深入,样本整合越来越多,细胞类型的细分也成为趋势,比如下面这一张。之前细胞类型的推断可能更偏向于根据表达量计算距离,后来的方案则更好地利用了公共参考数据库的资源辅助推测(比如SingleR中就包含了一些内置数据集,大部分是bulk RNA-Seq或芯片数据中经过筛选的细胞类型)

https://www.biorxiv.org/content/10.1101/2021.08.13.456196v1
https://www.scrna-tools.org/tools
image-20210824170550144