单细胞交响乐
  • 前言:我与《单细胞交响乐》的缘分
  • 1 准备篇:背景知识
    • 1.1 数据结构
    • 1.2 总览 | 从实验到分析
  • 2 积累篇:文献阅读
    • 2.1.1 综述 | 2019-单细胞转录组分析最佳思路
    • 2.1.2 综述 | 2018-单细胞捕获平台
    • 2.1.3 综述 | 2017-scRNA中的细胞聚类分群
    • 2.1.4 综述 | scRNA已经开发出超过1000款工具了,你用过几种?
    • 2.1.5 综述 | 2021-单细胞测序的微流控技术应用
    • 2.2.1 研究 | 2018-单细胞转录组探索癌症免疫治疗获得性抗性机理
    • 2.2.2 研究 | 2018-人类结直肠癌单细胞多组学分析
    • 2.2.3 研究 | 2020-单细胞分析揭示葡萄膜黑色素瘤新的进化复杂性
    • 2.2.4 研究 | 2020-COVID-19病人支气管免疫细胞单细胞测序分析
    • 2.2.5 研究 | 2020-原汁原味读--单细胞肿瘤免疫图谱
    • 2.2.6 研究 | 2021-多发性骨髓瘤发展过程中肿瘤和免疫细胞的共同进化
    • 2.2.7 研究 | 2021-多个组织的成纤维细胞图谱
    • 2.2.8 研究 | 2021-多组学分析肺结核队列的记忆T细胞状态
    • 2.2.9 研究 | 2021-CancerSCEM: 人类癌症单细胞表达图谱数据库
    • 2.2.10 研究| 2021-单细胞转录组分析COVID-19重症患者肺泡巨噬细胞亚型
    • 2.2.11 研究 |2021-单细胞转录组揭示肺腺癌特有的肿瘤微环境
    • 2.2.12 研究 | 2021-单细胞转录组揭示乳头状甲状腺癌起始与发展
    • 2.2.13 研究 | 2021-解析食管鳞癌化疗病人的单细胞转录组
    • 2.2.14 研究 | 2021-单细胞水平看骨髓瘤的细胞状态和基因调控
    • 2.3.1 算法|2020-BatchBench比较scRNA批次矫正方法
    • 2.3.2 算法 | 2021-scPhere——用地球仪来展示降维结果
    • 2.3.3 算法 | 2021-单细胞差异分析方法评测
    • 2.3.4 算法 | 2021-细胞分群新方法——CNA(co-varying neighborhood analysis)
    • 2.3.5 工具 | 2018-iSEE:单细胞数据可视化辅助网页工具
    • 2.3.6 工具 | 2021-MACA: 一款自动注释细胞类型的工具
    • 2.3.7 工具 | 2021-一个很有想法的工具——Ikarus,想要在单细胞水平直接鉴定肿瘤细胞
  • 3 流程篇:分析框架
    • 3.1 质控
    • 3.2 归一化
    • 3.3 挑选表达量高变化基因
    • 3.4 降维
    • 3.5 聚类
    • 3.6 Marker/标记基因检测
    • 3.7 细胞类型注释
    • 3.8 批次效应处理
    • 3.9 多样本间差异分析
    • 3.10 检测Doublet
    • 3.11 细胞周期推断
    • 3.12 细胞轨迹推断
    • 3.13 与蛋白丰度信息结合
    • 3.14 处理大型数据
    • 3.15 不同R包数据的相互转换
  • 4 实战篇:活学活用
    • 4.1 实战一 | Smart-seq2 | 小鼠骨髓
    • 4.2 实战二 | STRT-Seq | 小鼠大脑
    • 4.3 实战三 | 10X | 未过滤的PBMC
    • 4.4 实战四 | 10X | 过滤后的PBMC
    • 4.5 实战五 | CEL-seq2 | 人胰腺细胞
    • 4.6 实战六 | CEL-seq | 人胰腺细胞
    • 4.7 实战七 | SMARTer | 人胰腺细胞
    • 4.8 实战八 | Smart-seq2 | 人胰腺细胞
    • 4.9 实战九 | 不同技术数据整合 | 人胰腺细胞
    • 4.10 实战十 | CEL-seq | 小鼠造血干细胞
    • 4.11 实战十一 | Smart-seq2 | 小鼠造血干细胞
    • 4.12 实战十二 | 10X | 小鼠嵌合体胚胎
    • 4.13 实战十三 | 10X | 小鼠乳腺上皮细胞
    • 4.14 | 实战十四 | 10X | HCA计划的38万骨髓细胞
  • 5 补充篇:开拓思路
    • 5.1 10X Genomics概述
      • 5.1.1 10X Genomics 问题集锦
    • 5.2 CellRanger篇
      • 5.2.1 CellRanger实战(一)数据下载
      • 5.2.2 CellRanger实战(二) 使用前注意事项
      • 5.2.3 CellRanger实战(三) 使用初探
      • 5.2.4 CellRanger实战(四)流程概览
      • 5.2.5 CellRanger实战(五) 理解count输出的结果
    • 5.3 Seurat的使用
      • 5.3.1 Seurat V3 | 实战之2700 PBMCs分析
      • 5.3.2 Seurat V3 | 如何改造Seurat包的DoHeatmap函数?
      • 5.3.3 scRNA的3大R包对比
      • 5.3.4 Seurat两种数据比较:integrated vs RNA assay
      • 5.3.5 seurat 的几种findmaker比较
    • 5.4 Monocle的使用
      • 5.4.1 Monocle V3实战
    • 5.5 多个数据集的整合
      • 5.5.1 使用Seurat的merge功能进行整合
      • 5.5.2 如何使用sctransform去除批次效应
由 GitBook 提供支持
在本页
  • 1 前言
  • 数据准备
  • 数据初探
  • ID转换
  • 2 质控
  • 3 归一化
  • 4 找高变异基因
  • 5 降维聚类
  • 降维
  • 聚类
  • 作图

这有帮助吗?

  1. 4 实战篇:活学活用

4.13 实战十三 | 10X | 小鼠乳腺上皮细胞

刘小泽写于2020.7.21

上一页4.12 实战十二 | 10X | 小鼠嵌合体胚胎下一页4.14 | 实战十四 | 10X | HCA计划的38万骨髓细胞

最后更新于4年前

这有帮助吗?

1 前言

数据来自,使用的是妊娠期小鼠乳腺上皮细胞 + 10X技术建库

数据准备

library(scRNAseq)
sce.mam <- BachMammaryData(samples="G_1")
sce.mam
# class: SingleCellExperiment 
# dim: 27998 2915 
# metadata(0):
#   assays(1): counts
# rownames: NULL
# rowData names(2): Ensembl Symbol
# colnames: NULL
# colData names(3): Barcode Sample Condition
# reducedDimNames(0):
#   altExpNames(0):

数据初探

# 样本信息
sapply(names(colData(sce.mam)), function(x) head(colData(sce.mam)[,x]))
# Barcode              Sample Condition  
# [1,] "AAACCTGAGGATGCGT-1" "G_1"  "Gestation"
# [2,] "AAACCTGGTAGTAGTA-1" "G_1"  "Gestation"
# [3,] "AAACCTGTCAGCATGT-1" "G_1"  "Gestation"
# [4,] "AAACCTGTCGTCCGTT-1" "G_1"  "Gestation"
# [5,] "AAACGGGCACGAAATA-1" "G_1"  "Gestation"
# [6,] "AAACGGGCAGACGCTC-1" "G_1"  "Gestation"

ID转换

依然是整合行名 + 添加染色体信息

library(scater)
rownames(sce.mam) <- uniquifyFeatureNames(
    rowData(sce.mam)$Ensembl, rowData(sce.mam)$Symbol)

library(AnnotationHub)
ens.mm.v97 <- AnnotationHub()[["AH73905"]]
rowData(sce.mam)$SEQNAME <- mapIds(ens.mm.v97, keys=rowData(sce.mam)$Ensembl,
    keytype="GENEID", column="SEQNAME")

# 总共有13个线粒体基因
sum(grepl("MT",rowData(sce.mam)$SEQNAME))
# [1] 13

2 质控

依然是备份一下,把unfiltered数据主要用在质控的探索上

unfiltered <- sce.mam

使用线粒体信息进行过滤

is.mito <- rowData(sce.mam)$SEQNAME == "MT"
stats <- perCellQCMetrics(sce.mam, subsets=list(Mito=which(is.mito)))
qc <- quickPerCellQC(stats, percent_subsets="subsets_Mito_percent")

colSums(as.matrix(qc))
##              low_lib_size            low_n_features high_subsets_Mito_percent 
##                         0                         0                       143 
##                   discard 
##                       143

作图

colData(unfiltered) <- cbind(colData(unfiltered), stats)
unfiltered$discard <- qc$discard

gridExtra::grid.arrange(
    plotColData(unfiltered, y="sum", colour_by="discard") + 
        scale_y_log10() + ggtitle("Total count"),
    plotColData(unfiltered, y="detected", colour_by="discard") + 
        scale_y_log10() + ggtitle("Detected features"),
    plotColData(unfiltered, y="subsets_Mito_percent", 
        colour_by="discard") + ggtitle("Mito percent"),
    ncol=3
)

再看看线粒体含量与文库大小的关系

plotColData(unfiltered, x="sum", y="subsets_Mito_percent", 
    colour_by="discard") + scale_x_log10()

最后过滤

dim(unfiltered);dim(sce.mam)
# [1] 27998  2915
# [1] 27998  2772

3 归一化

使用去卷积的方法

library(scran)
set.seed(101000110)
clusters <- quickCluster(sce.mam)
sce.mam <- computeSumFactors(sce.mam, clusters=clusters)
sce.mam <- logNormCounts(sce.mam)

4 找高变异基因

这里由于是10X的数据,所以会有UMI信息,因此可以用基于泊松分布的模型构建方法

set.seed(00010101)
dec.mam <- modelGeneVarByPoisson(sce.mam)
top.mam <- getTopHVGs(dec.mam, prop=0.1)

最后做个图

plot(dec.mam$mean, dec.mam$total, pch=16, cex=0.5,
    xlab="Mean of log-expression", ylab="Variance of log-expression")
curfit <- metadata(dec.mam)
curve(curfit$trend(x), col='dodgerblue', add=TRUE, lwd=2)

5 降维聚类

降维

library(BiocSingular)
set.seed(101010011)
sce.mam <- denoisePCA(sce.mam, technical=dec.mam, subset.row=top.mam)
sce.mam <- runTSNE(sce.mam, dimred="PCA")

# 检查PC的数量
ncol(reducedDim(sce.mam, "PCA"))
## [1] 15

聚类

有一个很重要的参数是k ,含义是:the number of nearest neighbors used to construct the graph。如果k设置越大,得到的图之间联通程度越高,cluster也越大。因此这个参数也是可以不断尝试的

我们这里由于细胞数量比较多,所以设置的k就比较大,得到的cluster就少而大

snn.gr <- buildSNNGraph(sce.mam, use.dimred="PCA", k=25)
colLabels(sce.mam) <- factor(igraph::cluster_walktrap(snn.gr)$membership)

table(colLabels(sce.mam))
## 
##   1   2   3   4   5   6   7   8   9  10 
## 550 799 716 452  24  84  52  39  32  24

作图

plotTSNE(sce.mam, colour_by="label")
Bach et al. (2017)