4.2 实战二 | STRT-Seq | 小鼠大脑

刘小泽写于2020.7.19

1 前言

使用了一个存在异质性的数据集,是研究小鼠大脑的 (Zeisel et al. 2015)

其中大约包含3000个细胞,包括少突胶质细胞,小胶质细胞和神经元等,使用的细胞分离平台是Fluidigm C1微流控系统,属于比较早期的系统【单细胞测序的知识

文库制备时加入了UMI

UMI简单解释: UMI就是为了去除PCR扩增偏差的。一般一个基因对应多个UMI时,出现多个reads含有同一个UMI时,这里只计数一次。

UMI英文解释: Each transcript molecule can only produce one UMI count but can yield many reads after fragmentation

UMI详细解释: 不管是bulk RNA还是scRNA,都需要进行PCR扩增,但是不可避免有一些转录本会被扩增太多次,超过了真实表达量。当起始文库很小时(比如单细胞数据),就需要更多次的PCR过程,这个次数越多,引入的误差就越大。UMI就是Unique Molecular Identifier,由4-10个随机核苷酸组成,在mRNA反转录后,进入到文库中,每一个mRNA随机连上一个UMI,根据PCR结果可以计数不同的UMI,最终统计mRNA的数量。

UMI图片解释:

UMI有几个要求:

  • 不能是均聚物 ,如AAAAAAAAAA

  • 不能有N碱基

  • 不能包含碱基质量低于10的碱基

2 数据准备

# 自己下载
library(scRNAseq)
sce.zeisel <- ZeiselBrainData()
# 或者使用之前分享的RData
load('sce.zeisel.RData')

sce.zeisel
# class: SingleCellExperiment 
# dim: 20006 3005 
# metadata(0):
#   assays(1): counts
# rownames(20006): Tspan12 Tshz1 ... mt-Rnr1
# mt-Nd4l
# rowData names(1): featureType
# colnames(3005): 1772071015_C02 1772071017_G12
# ... 1772066098_A12 1772058148_F03
# colData names(10): tissue group # ...
# level1class level2class
# reducedDimNames(0):
#   altExpNames(2): ERCC repeat

看到这么几个信息:2万多基因,3005个样本;只有原始count矩阵;使用了symbol ID;加入了ERCC

# 有57个ERCC
> dim(altExp(sce.zeisel,'ERCC'))
[1]   57 3005

# 而且已经标注了线粒体基因
> table(rowData(sce.zeisel))

endogenous       mito 
     19972         34

一个重要操作:aggregateAcrossFeatures

英文解释是:Sum together expression values (by default, counts) for each feature set in each cell. 但是只看说明还是不好理解,举个例子:

可以看到下面会有很多基因具有多个loc

比如OTTMUSG00000016609_loc4OTTMUSG00000016609_loc3 其实可以算作一个基因

head(rownames(sce.zeisel)[grep("_loc[0-9]+$",rownames(sce.zeisel))])
# [1] "Syne1_loc2"              "Hist1h2ap_loc1"         
# [3] "Inadl_loc1"              "OTTMUSG00000016609_loc4"
# [5] "OTTMUSG00000016609_loc3" "Gm5643_loc2" 

# 这样的有300多个
> length(grep("_loc[0-9]+$",rownames(sce.zeisel)))
[1] 330

如果拿一个基因来看

Syne1有Syne1_loc1和Syne1_loc2

> length(grep("Syne1",rownames(sce.zeisel)))
[1] 2

counts(sce.zeisel)[grep("Syne1",rownames(sce.zeisel)),][1:2,1:3]
# 1772071015_C02 1772071017_G12 1772071017_A05
# Syne1_loc2             11              2              4
# Syne1_loc1              0              0              4

如果使用这个函数,会有怎样效果

test <- aggregateAcrossFeatures(sce.zeisel, 
                                      id=sub("_loc[0-9]+$", "", rownames(sce.zeisel)))
# 只剩一个了,也就是合二为一
> length(grep("Syne1",rownames(test)))
[1] 1

# 看表达量,也是合二为一
> counts(test)[grep("Syne1",rownames(test)),][1:3]
1772071015_C02 1772071017_G12 1772071017_A05 
            11              2              8

因此,明白了,这个函数就是处理相同行:把几个相同的行的值加在一起变为一行

也就明白了,下面👇为什么要进行sub操作,其实就是为了把loc去掉,暴露出相同的基因名,才能执行aggregateAcrossFeatures函数

sce.zeisel <- aggregateAcrossFeatures(sce.zeisel, 
                                      id=sub("_loc[0-9]+$", "", rownames(sce.zeisel)))

> dim(sce.zeisel)
[1] 19839  3005

再添加Ensembl ID

library(org.Mm.eg.db)
rowData(sce.zeisel)$Ensembl <- mapIds(org.Mm.eg.db, 
    keys=rownames(sce.zeisel), keytype="SYMBOL", column="ENSEMBL")

3 质控

备份数据

还是备份一下,把unfiltered数据主要用在质控的探索上

unfiltered <- sce.zeisel

这个公共数据的作者在发表文章时将数据的低质量细胞去掉了,但并不妨碍我们做个质控,也可以看看它去除的怎样

stats <- perCellQCMetrics(sce.zeisel, subsets=list(
    Mt=rowData(sce.zeisel)$featureType=="mito"))
qc <- quickPerCellQC(stats, percent_subsets=c("altexps_ERCC_percent", 
    "subsets_Mt_percent"))
sce.zeisel <- sce.zeisel[,!qc$discard]

> sum(qc$discard)
[1] 189

> dim(sce.zeisel)
[1] 19839  2816

根据原来的数据,加上质控标准作图

colData(unfiltered) <- cbind(colData(unfiltered), stats)
unfiltered$discard <- qc$discard
# 做个图
gridExtra::grid.arrange(
    plotColData(unfiltered, y="sum", colour_by="discard") +
        scale_y_log10() + ggtitle("Total count"),
    plotColData(unfiltered, y="detected", colour_by="discard") +
        scale_y_log10() + ggtitle("Detected features"),
    plotColData(unfiltered, y="altexps_ERCC_percent",
        colour_by="discard") + ggtitle("ERCC percent"),
    plotColData(unfiltered, y="subsets_Mt_percent",
        colour_by="discard") + ggtitle("Mito percent"),
    ncol=2
)

再看下文库大小和ERCC分别和线粒体含量的关系

gridExtra::grid.arrange(
    plotColData(unfiltered, x="sum", y="subsets_Mt_percent",
        colour_by="discard") + scale_x_log10(),
    plotColData(unfiltered, x="altexps_ERCC_percent", y="subsets_Mt_percent",
        colour_by="discard"),
    ncol=2
)

然后检查一下被过滤的原因

##              low_lib_size            low_n_features high_altexps_ERCC_percent 
##                         0                         3                        65 
##   high_subsets_Mt_percent                   discard 
##                       128                       189

4 归一化

这里细胞数量较多,因此需要预先分群+去卷积计算size factor

library(scran)
set.seed(1000)
clusters <- quickCluster(sce.zeisel)
sce.zeisel <- computeSumFactors(sce.zeisel, cluster=clusters) 
sce.zeisel <- logNormCounts(sce.zeisel)
summary(sizeFactors(sce.zeisel))
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##   0.119   0.486   0.831   1.000   1.321   4.509

看看两种归一化方法的差异

# 常规:最简单的只考虑文库大小
summary(librarySizeFactors(sce.zeisel))
# Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
# 0.1757  0.5680  0.8680  1.0000  1.2783  4.0839 

plot(librarySizeFactors(sce.zeisel), sizeFactors(sce.zeisel), pch=16,
    xlab="Library size factors", ylab="Deconvolution factors", log="xy")

5 找表达量高变化基因

理论上,应该对每个细胞都标记批次信息,添加block信息。但是这里由于技术不同,每个板子上只有20-40个细胞,并且细胞群体具有高度异质性,不能假设每个板上的细胞类型的分布是相同的,因此这里不使用block将批次信息“锁住”是合适的

既然有ERCC,就可以用第三种方法【在之前 3.3 挑选高变化基因 的2.3 考虑技术噪音】:

dec.zeisel <- modelGeneVarWithSpikes(sce.zeisel, "ERCC")
top.hvgs <- getTopHVGs(dec.zeisel, prop=0.1)
> length(top.hvgs)
[1] 1816

同样使用了spike-in,对比一下,看到这里不管总体方差还是技术因素方差都要比之前smart-seq2要小。

smart-seq2是按read计数,这里由于添加了UMI,是按molecule计数,也就是说,UMI的加入,确实减少了PCR扩增的偏差影响

另外图中看到,这里STRT-seq的spike-in方差一直要比内源基因的方差小,也就是说内源基因的变化幅度一直保持高位,体现了数据中包含多种细胞类型而导致的异质性,异质性导致了基因表达极度不均衡

6 降维

library(BiocSingular)
set.seed(101011001)
sce.zeisel <- denoisePCA(sce.zeisel, technical=dec.zeisel, subset.row=top.hvgs)
sce.zeisel <- runTSNE(sce.zeisel, dimred="PCA")

看一下得到的PC数

ncol(reducedDim(sce.zeisel, "PCA"))
## [1] 50

7 聚类

snn.gr <- buildSNNGraph(sce.zeisel, use.dimred="PCA")
colLabels(sce.zeisel) <- factor(igraph::cluster_walktrap(snn.gr)$membership)

看一下结果

table(colLabels(sce.zeisel))
## 
##   1   2   3   4   5   6   7   8   9  10  11  12  13  14 
## 283 451 114 143 599 167 191 128 350  70 199  58  39  24

画图

plotTSNE(sce.zeisel, colour_by="label")

8 找marker基因并解释结果

主要还是关注上调基因,可以帮我们快速判断出异质性群体中各个细胞类型的差异

比如还是针对cluster1看看

markers <- findMarkers(sce.zeisel, direction="up")
marker.set <- markers[["1"]]

> ncol(marker.set)
[1] 17

> colnames(marker.set)
 [1] "Top"           "p.value"       "FDR"           "summary.logFC" "logFC.2"       "logFC.3"       "logFC.4"      
 [8] "logFC.5"       "logFC.6"       "logFC.7"       "logFC.8"       "logFC.9"       "logFC.10"      "logFC.11"     
[15] "logFC.12"      "logFC.13"      "logFC.14"  


head(marker.set[,1:8], 10)

方法一:画热图

使用cluster1的Top10基因(但不一定只是10个)

top.markers <- rownames(marker.set)[marker.set$Top <= 10]
> length(top.markers)
[1] 58

plotHeatmap(sce.zeisel, features=top.markers, order_columns_by="label")

接下来就是根据背景知识了,比如看到Gad1、Slc6a1表达量都很高,可能表明cluster1属于中间神经元

方法二:基于logFC

比如可以挑出cluster1的计算结果marker.set中前50个基因(这里就是50个,而不是Top50),然后根据cluster1与其他clusters的logFC,对每个基因表达量做热图

library(pheatmap)
logFCs <- getMarkerEffects(marker.set[1:50,])
pheatmap(logFCs, breaks=seq(-5, 5, length.out=101))

那么这个函数到底做了什么呢?看图就知道:

也就是把每个基因在其他clusters的logFC结果挑出来,汇集成了一个新矩阵,我们自己手动也是可以做到的

最后更新于