4.10 实战十 | CEL-seq | 小鼠造血干细胞
刘小泽写于2020.7.21
1 前言
数据准备
library(scRNAseq)
sce.grun.hsc <- GrunHSCData(ensembl=TRUE)
sce.grun.hsc
# class: SingleCellExperiment
# dim: 21817 1915
# metadata(0):
# assays(1): counts
# rownames(21817): ENSMUSG00000109644
# ENSMUSG00000007777 ... ENSMUSG00000055670
# ENSMUSG00000039068
# rowData names(3): symbol chr originalName
# colnames(1915): JC4_349_HSC_FE_S13_
# JC4_350_HSC_FE_S13_ ...
# JC48P6_1203_HSC_FE_S8_
# JC48P6_1204_HSC_FE_S8_
# colData names(2): sample protocol
# reducedDimNames(0):
# altExpNames(0):
table(sce.grun.hsc$sample)
#
# JC20 JC21 JC26 JC27 JC28 JC30 JC32
# 87 96 85 91 80 96 93
# JC35 JC36 JC37 JC39 JC4 JC40 JC41
# 96 80 87 93 84 96 94
# JC43 JC44 JC45 JC46 JC48P4 JC48P6 JC48P7
# 92 94 90 96 95 96 94ID转换
2 质控


3 归一化
4 找表达量高变化基因

5 降维聚类
降维就采取最基础的方式:
聚类
作图

6 找marker基因

最后更新于