# 导入sce对象(https://scrnaseq-public-datasets.s3.amazonaws.com/scater-objects/manno_human.rds)
manno <- readRDS(file = "manno_human.rds")
> manno
class: SingleCellExperiment
dim: 20560 4029
metadata(0):
assays(2): counts logcounts
rownames(20560): 'MARC1' 'MARC2' ... ZZEF1 ZZZ3
rowData names(10): feature_symbol
is_feature_control ... total_counts
log10_total_counts
colnames(4029): 1772122_301_C02 1772122_180_E05
... 1772116-063_G02 1772099-259_H03
colData names(34): Species cell_type1 ...
pct_counts_ERCC is_cell_control
reducedDimNames(0):
altExpNames(0):
manno <- runPCA(manno)
# 转为seurat对象
manno.seurat <- as.Seurat(manno, counts = "counts", data = "logcounts")
# 看下这个函数
# as.Seurat(
# x,
# counts = "counts",
# data = "logcounts",
# assay = "RNA",
# project = "SingleCellExperiment",
# ...
# )
# 既然有默认参数,因此直接按下面这么写就可以:
manno.seurat <- as.Seurat(manno)
> manno.seurat
An object of class Seurat
20560 features across 4029 samples within 1 assay
Active assay: RNA (20560 features)
1 dimensional reduction calculated: PCA
Idents(manno.seurat) <- "cell_type1"
p1 <- DimPlot(manno.seurat, reduction = "PCA", group.by = "Source") + NoLegend()
p2 <- RidgePlot(manno.seurat, features = "ACTB", group.by = "Source")
p1 + p2