单细胞交响乐
  • 前言:我与《单细胞交响乐》的缘分
  • 1 准备篇:背景知识
    • 1.1 数据结构
    • 1.2 总览 | 从实验到分析
  • 2 积累篇:文献阅读
    • 2.1.1 综述 | 2019-单细胞转录组分析最佳思路
    • 2.1.2 综述 | 2018-单细胞捕获平台
    • 2.1.3 综述 | 2017-scRNA中的细胞聚类分群
    • 2.1.4 综述 | scRNA已经开发出超过1000款工具了,你用过几种?
    • 2.1.5 综述 | 2021-单细胞测序的微流控技术应用
    • 2.2.1 研究 | 2018-单细胞转录组探索癌症免疫治疗获得性抗性机理
    • 2.2.2 研究 | 2018-人类结直肠癌单细胞多组学分析
    • 2.2.3 研究 | 2020-单细胞分析揭示葡萄膜黑色素瘤新的进化复杂性
    • 2.2.4 研究 | 2020-COVID-19病人支气管免疫细胞单细胞测序分析
    • 2.2.5 研究 | 2020-原汁原味读--单细胞肿瘤免疫图谱
    • 2.2.6 研究 | 2021-多发性骨髓瘤发展过程中肿瘤和免疫细胞的共同进化
    • 2.2.7 研究 | 2021-多个组织的成纤维细胞图谱
    • 2.2.8 研究 | 2021-多组学分析肺结核队列的记忆T细胞状态
    • 2.2.9 研究 | 2021-CancerSCEM: 人类癌症单细胞表达图谱数据库
    • 2.2.10 研究| 2021-单细胞转录组分析COVID-19重症患者肺泡巨噬细胞亚型
    • 2.2.11 研究 |2021-单细胞转录组揭示肺腺癌特有的肿瘤微环境
    • 2.2.12 研究 | 2021-单细胞转录组揭示乳头状甲状腺癌起始与发展
    • 2.2.13 研究 | 2021-解析食管鳞癌化疗病人的单细胞转录组
    • 2.2.14 研究 | 2021-单细胞水平看骨髓瘤的细胞状态和基因调控
    • 2.3.1 算法|2020-BatchBench比较scRNA批次矫正方法
    • 2.3.2 算法 | 2021-scPhere——用地球仪来展示降维结果
    • 2.3.3 算法 | 2021-单细胞差异分析方法评测
    • 2.3.4 算法 | 2021-细胞分群新方法——CNA(co-varying neighborhood analysis)
    • 2.3.5 工具 | 2018-iSEE:单细胞数据可视化辅助网页工具
    • 2.3.6 工具 | 2021-MACA: 一款自动注释细胞类型的工具
    • 2.3.7 工具 | 2021-一个很有想法的工具——Ikarus,想要在单细胞水平直接鉴定肿瘤细胞
  • 3 流程篇:分析框架
    • 3.1 质控
    • 3.2 归一化
    • 3.3 挑选表达量高变化基因
    • 3.4 降维
    • 3.5 聚类
    • 3.6 Marker/标记基因检测
    • 3.7 细胞类型注释
    • 3.8 批次效应处理
    • 3.9 多样本间差异分析
    • 3.10 检测Doublet
    • 3.11 细胞周期推断
    • 3.12 细胞轨迹推断
    • 3.13 与蛋白丰度信息结合
    • 3.14 处理大型数据
    • 3.15 不同R包数据的相互转换
  • 4 实战篇:活学活用
    • 4.1 实战一 | Smart-seq2 | 小鼠骨髓
    • 4.2 实战二 | STRT-Seq | 小鼠大脑
    • 4.3 实战三 | 10X | 未过滤的PBMC
    • 4.4 实战四 | 10X | 过滤后的PBMC
    • 4.5 实战五 | CEL-seq2 | 人胰腺细胞
    • 4.6 实战六 | CEL-seq | 人胰腺细胞
    • 4.7 实战七 | SMARTer | 人胰腺细胞
    • 4.8 实战八 | Smart-seq2 | 人胰腺细胞
    • 4.9 实战九 | 不同技术数据整合 | 人胰腺细胞
    • 4.10 实战十 | CEL-seq | 小鼠造血干细胞
    • 4.11 实战十一 | Smart-seq2 | 小鼠造血干细胞
    • 4.12 实战十二 | 10X | 小鼠嵌合体胚胎
    • 4.13 实战十三 | 10X | 小鼠乳腺上皮细胞
    • 4.14 | 实战十四 | 10X | HCA计划的38万骨髓细胞
  • 5 补充篇:开拓思路
    • 5.1 10X Genomics概述
      • 5.1.1 10X Genomics 问题集锦
    • 5.2 CellRanger篇
      • 5.2.1 CellRanger实战(一)数据下载
      • 5.2.2 CellRanger实战(二) 使用前注意事项
      • 5.2.3 CellRanger实战(三) 使用初探
      • 5.2.4 CellRanger实战(四)流程概览
      • 5.2.5 CellRanger实战(五) 理解count输出的结果
    • 5.3 Seurat的使用
      • 5.3.1 Seurat V3 | 实战之2700 PBMCs分析
      • 5.3.2 Seurat V3 | 如何改造Seurat包的DoHeatmap函数?
      • 5.3.3 scRNA的3大R包对比
      • 5.3.4 Seurat两种数据比较:integrated vs RNA assay
      • 5.3.5 seurat 的几种findmaker比较
    • 5.4 Monocle的使用
      • 5.4.1 Monocle V3实战
    • 5.5 多个数据集的整合
      • 5.5.1 使用Seurat的merge功能进行整合
      • 5.5.2 如何使用sctransform去除批次效应
由 GitBook 提供支持
在本页
  • 1 前言
  • 2 Seurat与SingleCellExperiment的相互转换
  • 2.1 Seurat转SingleCellExperiment
  • 2.2 SingleCellExperiment转Seurat
  • 3 Seurat与loom的相互转换
  • 3.1 Seurat转为loom
  • 3.2 loom转为Seurat
  • 3.3 补充
  • 4 Scanpy转Seurat

这有帮助吗?

  1. 3 流程篇:分析框架

3.15 不同R包数据的相互转换

刘小泽写于2020.7.18

上一页3.14 处理大型数据下一页4 实战篇:活学活用

最后更新于4年前

这有帮助吗?

1 前言

这部分内容是来自Seurat:

单细胞数据格式目前有这么几大派:

  • Bioconductor主导的SingleCellExperiment数据格式:例如scran、scater、monocle(尽管它的对象不直接使用SingleCellExperiment,但灵感来源于SingleCellExperiment,并且操作也是类似的)

  • Seurat:SeuratObject格式

  • scanpy:AnnData格式

这么一来,很多分析流程就被固定在某个包中了,比如使用Seurat会一用到底,也不会去学习scater或其他R包了,但也许就错过了其他R包好用的一些功能(比如我感觉scater的uniquifyFeatureNames就很好用)

既然有需求,就有开发者添加功能 ,这里Davis McCarthy 和Alex Wolf就为Seurat添加了和其他数据类型转换的函数

2 Seurat与SingleCellExperiment的相互转换

library(scater)
# devtools::install_github(repo = "satijalab/seurat", ref = "loom")
library(loomR)
library(Seurat)
library(patchwork)

2.1 Seurat转SingleCellExperiment

# 使用Seurat内置数据
data("pbmc_small")
> pbmc_small
An object of class Seurat 
230 features across 80 samples within 1 assay 
Active assay: RNA (230 features)
 2 dimensional reductions calculated: pca, tsne

# 一个函数即可
pbmc.sce <- as.SingleCellExperiment(pbmc_small)
> pbmc.sce
class: SingleCellExperiment 
dim: 230 80 
metadata(0):
assays(2): counts logcounts
rownames(230): MS4A1 CD79B ... SPON2 S100B
rowData names(5): vst.mean vst.variance
  vst.variance.expected
  vst.variance.standardized vst.variable
colnames(80): ATGCCAGAACGACT CATGGCCTGTGCAT ...
  GGAACACTTCAGAC CTTGATTGATCTTC
colData names(8): orig.ident nCount_RNA ...
  RNA_snn_res.1 ident
reducedDimNames(2): PCA TSNE
spikeNames(0):
altExpNames(0):

# 接下来就是scater的操作了
p1 <- plotExpression(pbmc.sce, features = "MS4A1", x = "ident") + theme(axis.text.x = element_text(angle = 45, 
    hjust = 1))
p2 <- plotPCA(pbmc.sce, colour_by = "ident")
p1 + p2

2.2 SingleCellExperiment转Seurat

# 导入sce对象(https://scrnaseq-public-datasets.s3.amazonaws.com/scater-objects/manno_human.rds)
manno <- readRDS(file = "manno_human.rds")
> manno
class: SingleCellExperiment 
dim: 20560 4029 
metadata(0):
assays(2): counts logcounts
rownames(20560): 'MARC1' 'MARC2' ... ZZEF1 ZZZ3
rowData names(10): feature_symbol
  is_feature_control ... total_counts
  log10_total_counts
colnames(4029): 1772122_301_C02 1772122_180_E05
  ... 1772116-063_G02 1772099-259_H03
colData names(34): Species cell_type1 ...
  pct_counts_ERCC is_cell_control
reducedDimNames(0):
altExpNames(0):

manno <- runPCA(manno)
# 转为seurat对象
manno.seurat <- as.Seurat(manno, counts = "counts", data = "logcounts")

# 看下这个函数
# as.Seurat(
#     x,
#     counts = "counts",
#     data = "logcounts",
#     assay = "RNA",
#     project = "SingleCellExperiment",
#     ...
# )
# 既然有默认参数,因此直接按下面这么写就可以:
manno.seurat <- as.Seurat(manno)

> manno.seurat
An object of class Seurat 
20560 features across 4029 samples within 1 assay 
Active assay: RNA (20560 features)
 1 dimensional reduction calculated: PCA

Idents(manno.seurat) <- "cell_type1"
p1 <- DimPlot(manno.seurat, reduction = "PCA", group.by = "Source") + NoLegend()
p2 <- RidgePlot(manno.seurat, features = "ACTB", group.by = "Source")
p1 + p2

3 Seurat与loom的相互转换

3.1 Seurat转为loom

pbmc.loom <- as.loom(pbmc, filename = "pbmc3k.loom", verbose = FALSE)
pbmc.loom
## Class: loom
## Filename: /__w/1/s/output/pbmc3k.loom
## Access type: H5F_ACC_RDWR
## Attributes: version, chunks, LOOM_SPEC_VERSION, assay, last_modified
## Listing:
##        name    obj_type dataset.dims dataset.type_class
##   col_attrs   H5I_GROUP         <NA>               <NA>
##  col_graphs   H5I_GROUP         <NA>               <NA>
##      layers   H5I_GROUP         <NA>               <NA>
##      matrix H5I_DATASET 2638 x 13714          H5T_FLOAT
##   row_attrs   H5I_GROUP         <NA>               <NA>
##  row_graphs   H5I_GROUP         <NA>               <NA>

# 最后使用完要记得关上loom对象
pbmc.loom$close_all()

3.2 loom转为Seurat

首先读取:用 loomR 的connect

l6.immune <- connect(filename = "../data/l6_r1_immune_cells.loom", mode = "r")
l6.immune
## Class: loom
## Filename: /__w/1/s/data/l6_r1_immune_cells.loom
## Access type: H5F_ACC_RDONLY
## Attributes: CreationDate, last_modified
## Listing:
##        name    obj_type  dataset.dims dataset.type_class
##   col_attrs   H5I_GROUP          <NA>               <NA>
##  col_graphs   H5I_GROUP          <NA>               <NA>
##      layers   H5I_GROUP          <NA>               <NA>
##      matrix H5I_DATASET 14908 x 27998          H5T_FLOAT
##   row_attrs   H5I_GROUP          <NA>               <NA>
##  row_graphs   H5I_GROUP          <NA>               <NA>

然后转换

l6.seurat <- as.Seurat(l6.immune)
VlnPlot(l6.seurat, features = c("Sparc", "Ftl1", "Junb", "Ccl4"), ncol = 2, pt.size = 0.1)

最后处理完,记得关闭loom文件

l6.immune$close_all()

3.3 补充

如果使用Seurat V2,还有一个自带的函数Convert

data("pbmc_small")
pbmc_small
pfile <- Convert(from = pbmc_small, to = "loom", filename = "pbmc_small.loom", 
    display.progress = FALSE)
pfile
## Class: loom
## Filename: /home/paul/Documents/Satija/pbmc_small.loom
## Access type: H5F_ACC_RDWR
## Attributes: version, chunks
## Listing:
##        name    obj_type dataset.dims dataset.type_class
##   col_attrs   H5I_GROUP         <NA>               <NA>
##  col_graphs   H5I_GROUP         <NA>               <NA>
##      layers   H5I_GROUP         <NA>               <NA>
##      matrix H5I_DATASET     80 x 230          H5T_FLOAT
##   row_attrs   H5I_GROUP         <NA>               <NA>
##  row_graphs   H5I_GROUP         <NA>               <NA>

4 Scanpy转Seurat

Seurat有一个函数ReadH5AD可以读取AnnData的H5AD文件

pbmc3k <- ReadH5AD(file = "pbmc3k.h5ad")
# 利用Seurat操作
Idents(pbmc3k) <- "louvain"
p1 <- DimPlot(pbmc3k, label = TRUE)
p2 <- VlnPlot(pbmc3k, features = c("CST3", "NKG7", "PPBP"), combine = FALSE)
wrap_plots(c(list(p1), p2), ncol = 2) & NoLegend()

目前还不能直接将Seurat写成H5AD文件,因此不能之间将Seurat转为Scanpy;但是可以将loom文件作为桥梁实现Seurat转Scanpy,例如Scanpy 有一个函数scanpy.read_loom()

还记得上次在中说到:处理大型数据遇到内存不足时,可以使用这个HDF5ArrayR包(类似的还有 bigmemory, matter),它会将底层数据做成HDF5格式,用硬盘空间来存储数据,必要时再调用一部分数据到内存。loom格式就是处理HDF5使用的

参考:

https://satijalab.org/seurat/v3.1/conversion_vignette.html
单细胞交响乐16-处理大型数据
https://scanpy.readthedocs.io/en/stable/api/scanpy.read_loom.html