4.7 实战七 | SMARTer | 人胰腺细胞
刘小泽写于2020.7.20

1 前言

这次使用的数据是:Lawlor et al. (2017) 中的不同人类供体的胰腺细胞
SMARTer其实不是个像Fluidigm、10X一样的制备系统,它是一个试剂盒。SMART技术是Clontech(Takara旗下全资子公司)的专利技术,2009年升级为SAMRTer技术后,采用更灵敏的SMARTer Oligo和高效的SMARTScribe RT进行逆转录,使其灵敏度提高至皮克级。利用SMARTer技术只需单管、单酶即可完成逆转录,无需接头连接,减少了样品操作步骤,也极大降低了样品损失,保留了原始信息,为RNA-Seq提供了可靠的基础。
2013年 Clontech公司就为Fluidigm的C1单细胞全自动制备系统推出了SMARTer Ultra Low RNA Kit。当时也是能够从C1捕获的单细胞中产生mRNA-seq文库,方便了研究。Fluidigm在C1平台上检验了多款试剂盒,发现SMARTer cDNA合成是最可靠的方法之一
后来很多平台也在使用SMARTer试剂(如WaferGen ICELL8 Single-Cell System),不过后来发现Smart-seq2的扩增效果优于SMARTer试剂盒,而且Smart-seq2技术比传统的SMARTer方法能产生更长和更多的cDNA,在低表达量时,Smart-seq2比SMARTer的基因检出率更高,结果更稳定

数据准备

1
library(scRNAseq)
2
sce.lawlor <- LawlorPancreasData()
3
sce.lawlor
4
# class: SingleCellExperiment
5
# dim: 26616 638
6
# metadata(0):
7
# assays(1): counts
8
# rownames(26616): ENSG00000229483 ENSG00000232849 ...
9
# ENSG00000251576 ENSG00000082898
10
# rowData names(0):
11
# colnames(638): 10th_C10_S104 10th_C11_S96 ...
12
# 9th-C96_S81 9th-C9_S13
13
# colData names(8): title age ... race Sex
14
# reducedDimNames(0):
15
# altExpNames(0):
Copied!

ID转换

1
library(AnnotationHub)
2
edb <- AnnotationHub()[["AH73881"]]
3
anno <- select(edb, keys=rownames(sce.lawlor), keytype="GENEID",
4
columns=c("SYMBOL", "SEQNAME"))
5
rowData(sce.lawlor) <- anno[match(rownames(sce.lawlor), anno[,1]),-1]
6
rowData(sce.lawlor)
7
# DataFrame with 26616 rows and 2 columns
8
# SYMBOL SEQNAME
9
# <character> <character>
10
# ENSG00000229483 LINC00362 13
11
# ENSG00000232849 LINC00363 13
12
# ENSG00000229558 SACS-AS1 13
13
# ENSG00000232977 LINC00327 13
14
# ENSG00000227893 LINC00352 13
15
# ... ... ...
16
# ENSG00000232746 LINC02022 3
17
# ENSG00000150867 PIP4K2A 10
18
# ENSG00000255021 AC093496.1 3
19
# ENSG00000251576 LINC01267 3
20
# ENSG00000082898 XPO1 2
Copied!

2 质控

依然是备份一下,把unfiltered数据主要用在质控的探索上
1
unfiltered <- sce.lawlor
Copied!
检查是否有线粒体基因和批次信息
1
# 其中有MT基因
2
table(rowData(sce.lawlor)$SEQNAME=="MT")
3
#
4
# FALSE TRUE
5
# 25269 13
6
7
# 还有一些批次信息
8
table(sce.lawlor$`islet unos id`)
9
#
10
# ACCG268 ACCR015A ACEK420A ACEL337 ACHY057 ACIB065 ACIW009 ACJV399
11
# 136 57 45 103 39 57 93 108
Copied!
进行质控
1
stats <- perCellQCMetrics(sce.lawlor,
2
subsets=list(Mito=which(rowData(sce.lawlor)$SEQNAME=="MT")))
3
qc <- quickPerCellQC(stats, percent_subsets="subsets_Mito_percent",
4
batch=sce.lawlor$`islet unos id`)
5
# 过滤了34个细胞
6
table(qc$discard)
7
#
8
# FALSE TRUE
9
# 604 34
10
11
sce.lawlor <- sce.lawlor[,!qc$discard]
Copied!
看看过滤掉多少
1
colSums(as.matrix(qc))
2
# low_lib_size low_n_features high_subsets_Mito_percent discard
3
# 9 5 25 34
Copied!
作图看一下
1
colData(unfiltered) <- cbind(colData(unfiltered), stats)
2
unfiltered$discard <- qc$discard
3
4
gridExtra::grid.arrange(
5
plotColData(unfiltered, x="islet unos id", y="sum", colour_by="discard") +
6
scale_y_log10() + ggtitle("Total count") +
7
theme(axis.text.x = element_text(angle = 90)),
8
plotColData(unfiltered, x="islet unos id", y="detected",
9
colour_by="discard") + scale_y_log10() + ggtitle("Detected features") +
10
theme(axis.text.x = element_text(angle = 90)),
11
plotColData(unfiltered, x="islet unos id", y="subsets_Mito_percent",
12
colour_by="discard") + ggtitle("Mito percent") +
13
theme(axis.text.x = element_text(angle = 90)),
14
ncol=2
15
)
Copied!
看一下文库大小和线粒体占比的关系
1
plotColData(unfiltered, x="sum", y="subsets_Mito_percent",
2
colour_by="discard") + scale_x_log10()
Copied!
最后把过滤条件应用在原数据
1
sce.lawlor <- sce.lawlor[,!qc$discard]
Copied!

3 归一化

继续使用去卷积方法
1
library(scran)
2
set.seed(1000)
3
clusters <- quickCluster(sce.lawlor)
4
sce.lawlor <- computeSumFactors(sce.lawlor, clusters=clusters)
5
sce.lawlor <- logNormCounts(sce.lawlor)
6
7
summary(sizeFactors(sce.lawlor))
8
# Min. 1st Qu. Median Mean 3rd Qu. Max.
9
# 0.2955 0.7807 0.9633 1.0000 1.1820 2.6287
Copied!

4 找表达量高变化基因

这里没有ERCC也没有UMI,所以就用最基础的方法构建模型:modelGeneVar
不过还是要指定批次信息
1
dec.lawlor <- modelGeneVar(sce.lawlor, block=sce.lawlor$`islet unos id`)
2
chosen.genes <- getTopHVGs(dec.lawlor, n=2000)
Copied!

5 【尝试】矫正批次

这里写“尝试”是因为这里有一个问题:细胞总数不多,才600个,但批次的数量很多,所以归到单独的批次上细胞数就很少。这时如果继续矫正批次,不知道会不会抹除一些真实的生物学特性。
归根结底,还是一个技术噪音与生物因素之间的取舍问题
1
table(sce.lawlor$`islet unos id`)
2
#
3
# ACCG268 ACCR015A ACEK420A ACEL337 ACHY057 ACIB065 ACIW009 ACJV399
4
# 136 57 45 103 39 57 93 108
Copied!
所以可以尝试一下:
1
library(batchelor)
2
set.seed(1001010)
3
merged.lawlor <- fastMNN(sce.lawlor, subset.row=chosen.genes,
4
batch=sce.lawlor$`islet unos id`)
5
6
metadata(merged.lawlor)$merge.info$lost.var
Copied!
关于这个结果:lost.var ,值越大表示丢失的真实生物异质性越多
    It contains a matrix of the variance lost in each batch (column) at each merge step (row).
    Large proportions of lost variance (>10%) suggest that correction is removing genuine biological heterogeneity.
看到的确有损失生物异质性的可能性,那么就先放弃这个计划,直接进行下面的降维

5 降维聚类

降维

1
library(BiocSingular)
2
set.seed(101011001)
3
sce.lawlor <- runPCA(sce.lawlor, subset_row=chosen.genes, ncomponents=25)
4
sce.lawlor <- runTSNE(sce.lawlor, dimred="PCA")
Copied!

聚类

1
snn.gr <- buildSNNGraph(sce.lawlor, use.dimred="PCA")
2
colLabels(sce.lawlor) <- factor(igraph::cluster_walktrap(snn.gr)$membership)
Copied!
看分群与细胞类型之间关系
1
tab <- table(colLabels(sce.lawlor), sce.lawlor$`cell type`)
2
library(pheatmap)
3
pheatmap(log10(tab+10), color=viridis::viridis(100))
Copied!
看分群与批次之间
1
tab2 <- table(colLabels(sce.lawlor), sce.lawlor$`islet unos id`)
2
library(pheatmap)
3
pheatmap(log10(tab2+10), color=viridis::viridis(100))
Copied!

最后看看批次效应

1
gridExtra::grid.arrange(
2
plotTSNE(sce.lawlor, colour_by="label"),
3
plotTSNE(sce.lawlor, colour_by="islet unos id"),
4
ncol=2
5
)
Copied!
最近更新 1yr ago