单细胞交响乐
  • 前言:我与《单细胞交响乐》的缘分
  • 1 准备篇:背景知识
    • 1.1 数据结构
    • 1.2 总览 | 从实验到分析
  • 2 积累篇:文献阅读
    • 2.1.1 综述 | 2019-单细胞转录组分析最佳思路
    • 2.1.2 综述 | 2018-单细胞捕获平台
    • 2.1.3 综述 | 2017-scRNA中的细胞聚类分群
    • 2.1.4 综述 | scRNA已经开发出超过1000款工具了,你用过几种?
    • 2.1.5 综述 | 2021-单细胞测序的微流控技术应用
    • 2.2.1 研究 | 2018-单细胞转录组探索癌症免疫治疗获得性抗性机理
    • 2.2.2 研究 | 2018-人类结直肠癌单细胞多组学分析
    • 2.2.3 研究 | 2020-单细胞分析揭示葡萄膜黑色素瘤新的进化复杂性
    • 2.2.4 研究 | 2020-COVID-19病人支气管免疫细胞单细胞测序分析
    • 2.2.5 研究 | 2020-原汁原味读--单细胞肿瘤免疫图谱
    • 2.2.6 研究 | 2021-多发性骨髓瘤发展过程中肿瘤和免疫细胞的共同进化
    • 2.2.7 研究 | 2021-多个组织的成纤维细胞图谱
    • 2.2.8 研究 | 2021-多组学分析肺结核队列的记忆T细胞状态
    • 2.2.9 研究 | 2021-CancerSCEM: 人类癌症单细胞表达图谱数据库
    • 2.2.10 研究| 2021-单细胞转录组分析COVID-19重症患者肺泡巨噬细胞亚型
    • 2.2.11 研究 |2021-单细胞转录组揭示肺腺癌特有的肿瘤微环境
    • 2.2.12 研究 | 2021-单细胞转录组揭示乳头状甲状腺癌起始与发展
    • 2.2.13 研究 | 2021-解析食管鳞癌化疗病人的单细胞转录组
    • 2.2.14 研究 | 2021-单细胞水平看骨髓瘤的细胞状态和基因调控
    • 2.3.1 算法|2020-BatchBench比较scRNA批次矫正方法
    • 2.3.2 算法 | 2021-scPhere——用地球仪来展示降维结果
    • 2.3.3 算法 | 2021-单细胞差异分析方法评测
    • 2.3.4 算法 | 2021-细胞分群新方法——CNA(co-varying neighborhood analysis)
    • 2.3.5 工具 | 2018-iSEE:单细胞数据可视化辅助网页工具
    • 2.3.6 工具 | 2021-MACA: 一款自动注释细胞类型的工具
    • 2.3.7 工具 | 2021-一个很有想法的工具——Ikarus,想要在单细胞水平直接鉴定肿瘤细胞
  • 3 流程篇:分析框架
    • 3.1 质控
    • 3.2 归一化
    • 3.3 挑选表达量高变化基因
    • 3.4 降维
    • 3.5 聚类
    • 3.6 Marker/标记基因检测
    • 3.7 细胞类型注释
    • 3.8 批次效应处理
    • 3.9 多样本间差异分析
    • 3.10 检测Doublet
    • 3.11 细胞周期推断
    • 3.12 细胞轨迹推断
    • 3.13 与蛋白丰度信息结合
    • 3.14 处理大型数据
    • 3.15 不同R包数据的相互转换
  • 4 实战篇:活学活用
    • 4.1 实战一 | Smart-seq2 | 小鼠骨髓
    • 4.2 实战二 | STRT-Seq | 小鼠大脑
    • 4.3 实战三 | 10X | 未过滤的PBMC
    • 4.4 实战四 | 10X | 过滤后的PBMC
    • 4.5 实战五 | CEL-seq2 | 人胰腺细胞
    • 4.6 实战六 | CEL-seq | 人胰腺细胞
    • 4.7 实战七 | SMARTer | 人胰腺细胞
    • 4.8 实战八 | Smart-seq2 | 人胰腺细胞
    • 4.9 实战九 | 不同技术数据整合 | 人胰腺细胞
    • 4.10 实战十 | CEL-seq | 小鼠造血干细胞
    • 4.11 实战十一 | Smart-seq2 | 小鼠造血干细胞
    • 4.12 实战十二 | 10X | 小鼠嵌合体胚胎
    • 4.13 实战十三 | 10X | 小鼠乳腺上皮细胞
    • 4.14 | 实战十四 | 10X | HCA计划的38万骨髓细胞
  • 5 补充篇:开拓思路
    • 5.1 10X Genomics概述
      • 5.1.1 10X Genomics 问题集锦
    • 5.2 CellRanger篇
      • 5.2.1 CellRanger实战(一)数据下载
      • 5.2.2 CellRanger实战(二) 使用前注意事项
      • 5.2.3 CellRanger实战(三) 使用初探
      • 5.2.4 CellRanger实战(四)流程概览
      • 5.2.5 CellRanger实战(五) 理解count输出的结果
    • 5.3 Seurat的使用
      • 5.3.1 Seurat V3 | 实战之2700 PBMCs分析
      • 5.3.2 Seurat V3 | 如何改造Seurat包的DoHeatmap函数?
      • 5.3.3 scRNA的3大R包对比
      • 5.3.4 Seurat两种数据比较:integrated vs RNA assay
      • 5.3.5 seurat 的几种findmaker比较
    • 5.4 Monocle的使用
      • 5.4.1 Monocle V3实战
    • 5.5 多个数据集的整合
      • 5.5.1 使用Seurat的merge功能进行整合
      • 5.5.2 如何使用sctransform去除批次效应
由 GitBook 提供支持
在本页
  • 1 前言
  • 2 数据准备
  • 下载
  • 读取
  • 转换ID,添加染色体信息
  • 3 质控
  • 数据备份
  • 根据原来的数据,加上质控标准作图
  • 再看下文库大小分别和线粒体含量的关系
  • 4 归一化
  • 5 找表达量高变化基因
  • 6 降维
  • 7 聚类
  • 8 找marker基因并解释结果

这有帮助吗?

  1. 4 实战篇:活学活用

4.3 实战三 | 10X | 未过滤的PBMC

刘小泽写于2020.7.19

上一页4.2 实战二 | STRT-Seq | 小鼠大脑下一页4.4 实战四 | 10X | 过滤后的PBMC

最后更新于4年前

这有帮助吗?

1 前言

相信学习单细胞数据分析的大家对PBMC都不陌生,虽然不是相关背景,但Seurat的PBMC数据深入人心。PBMC全称是peripheral blood mononuclear cell ,外周血单核细胞。

我们这里用的数据集来自,并在,数量比Seurat使用的的2700个细胞数据更大

2 数据准备

下载

当然也可以跳过这一步,自己下载好之后读入。这里只是学习一下另一种方法

library(BiocFileCache)
bfc <- BiocFileCache("raw_data", ask = FALSE)
raw.path <- bfcrpath(bfc, file.path("http://cf.10xgenomics.com/samples",
    "cell-exp/2.1.0/pbmc4k/pbmc4k_raw_gene_bc_matrices.tar.gz"))
untar(raw.path, exdir=file.path(tempdir(), "pbmc4k"))
# 最后也就是得到这三个文件:barcodes.tsv genes.tsv    matrix.mtx

读取

library(DropletUtils)
fname <- file.path(tempdir(), "pbmc4k/raw_gene_bc_matrices/GRCh38")
sce.pbmc <- read10xCounts(fname, col.names=TRUE)
# 看这里的数量惊人,但是后面还需要过滤
sce.pbmc
# class: SingleCellExperiment 
# dim: 33694 737280 
# metadata(1): Samples
# assays(1): counts
# rownames(33694): ENSG00000243485
# ENSG00000237613 ... ENSG00000277475
# ENSG00000268674
# rowData names(2): ID Symbol
# colnames(737280): AAACCTGAGAAACCAT-1
# AAACCTGAGAAACCGC-1 ... TTTGTCATCTTTAGTC-1
# TTTGTCATCTTTCCTC-1
# colData names(2): Sample Barcode
# reducedDimNames(0):
#   altExpNames(0):

转换ID,添加染色体信息

library(scater)
rownames(sce.pbmc) <- uniquifyFeatureNames(
    rowData(sce.pbmc)$ID, rowData(sce.pbmc)$Symbol)

library(EnsDb.Hsapiens.v86)
location <- mapIds(EnsDb.Hsapiens.v86, keys=rowData(sce.pbmc)$ID, 
    column="SEQNAME", keytype="GENEID")

3 质控

10X数据面临的一大问题就是空液滴,因此需要emptyDrops检验一下

set.seed(100)
# 对70多万个液滴进行检验
e.out <- emptyDrops(counts(sce.pbmc))
# > e.out
# DataFrame with 737280 rows and 5 columns
# Total   LogProb    PValue   Limited       FDR
# <integer> <numeric> <numeric> <logical> <numeric>
#   AAACCTGAGAAACCAT-1         1        NA        NA        NA        NA
# AAACCTGAGAAACCGC-1         0        NA        NA        NA        NA
# AAACCTGAGAAACCTA-1         1        NA        NA        NA        NA
# AAACCTGAGAAACGAG-1         0        NA        NA        NA        NA
# AAACCTGAGAAACGCC-1         1        NA        NA        NA        NA
# ...                      ...       ...       ...       ...       ...
# TTTGTCATCTTTACAC-1         2        NA        NA        NA        NA
# TTTGTCATCTTTACGT-1        33        NA        NA        NA        NA
# TTTGTCATCTTTAGGG-1         0        NA        NA        NA        NA
# TTTGTCATCTTTAGTC-1         0        NA        NA        NA        NA
# TTTGTCATCTTTCCTC-1         1        NA        NA        NA        NA

# 最后过滤,剩下4000多
sce.pbmc <- sce.pbmc[,which(e.out$FDR <= 0.001)]
sce.pbmc
# class: SingleCellExperiment 
# dim: 33694 4233 
# metadata(1): Samples
# assays(1): counts
# rownames(33694): RP11-34P13.3 FAM138A ...
# AC213203.1 FAM231B
# rowData names(2): ID Symbol
# colnames(4233): AAACCTGAGAAGGCCT-1
# AAACCTGAGACAGACC-1 ... TTTGTCACAGGTCCAC-1
# TTTGTCATCCCAAGAT-1
# colData names(2): Sample Barcode
# reducedDimNames(0):
#   altExpNames(0):

数据备份

把unfiltered数据主要用在质控的探索上

unfiltered <- sce.pbmc

这里过滤的条件不需要太严苛,只需要去除线粒体含量太高的细胞即可

成熟的mRNA会通过核孔来到细胞质。如果细胞遭到破坏,大量细胞质中mRNA流失,而线粒体体积比较大,流不出去,含量基本不变,最后导致细胞质中捕获的线粒体RNA占比升高

stats <- perCellQCMetrics(sce.pbmc, subsets=list(Mito=which(location=="MT")))
high.mito <- isOutlier(stats$subsets_Mito_percent, type="higher")
sce.pbmc <- sce.pbmc[,!high.mito]

summary(high.mito)
##    Mode   FALSE    TRUE 
## logical    3922     311

根据原来的数据,加上质控标准作图

colData(unfiltered) <- cbind(colData(unfiltered), stats)
unfiltered$discard <- high.mito

gridExtra::grid.arrange(
    plotColData(unfiltered, y="sum", colour_by="discard") +
        scale_y_log10() + ggtitle("Total count"),
    plotColData(unfiltered, y="detected", colour_by="discard") +
        scale_y_log10() + ggtitle("Detected features"),
    plotColData(unfiltered, y="subsets_Mito_percent",
        colour_by="discard") + ggtitle("Mito percent"),
    ncol=3
)

再看下文库大小分别和线粒体含量的关系

plotColData(unfiltered, x="sum", y="subsets_Mito_percent",
    colour_by="discard") + scale_x_log10()

4 归一化

也是使用预分群+去卷积计算size factor的方法

library(scran)
set.seed(1000)
clusters <- quickCluster(sce.pbmc)
sce.pbmc <- computeSumFactors(sce.pbmc, cluster=clusters)
sce.pbmc <- logNormCounts(sce.pbmc)

summary(sizeFactors(sce.pbmc))
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##   0.009   0.710   0.871   1.000   1.094  13.948

看看两种归一化方法的差异

plot(librarySizeFactors(sce.pbmc), sizeFactors(sce.pbmc), pch=16,
    xlab="Library size factors", ylab="Deconvolution factors", log="xy")
abline(a=0, b=1, col="red")

5 找表达量高变化基因

set.seed(1001)
dec.pbmc <- modelGeneVarByPoisson(sce.pbmc)
top.pbmc <- getTopHVGs(dec.pbmc, prop=0.1)

# 作图
plot(dec.pbmc$mean, dec.pbmc$total, pch=16, cex=0.5,
    xlab="Mean of log-expression", ylab="Variance of log-expression")
curfit <- metadata(dec.pbmc)
# 可视化一条线(下图的蓝线),这条线指所有的基因都会存在的一种偏差
curve(curfit$trend(x), col='dodgerblue', add=TRUE, lwd=2)

6 降维

set.seed(10000)
sce.pbmc <- denoisePCA(sce.pbmc, subset.row=top.pbmc, technical=dec.pbmc)

set.seed(100000)
sce.pbmc <- runTSNE(sce.pbmc, dimred="PCA")

set.seed(1000000)
sce.pbmc <- runUMAP(sce.pbmc, dimred="PCA")

看看保留了几个PC

ncol(reducedDim(sce.pbmc, "PCA"))
## [1] 8

7 聚类

g <- buildSNNGraph(sce.pbmc, k=10, use.dimred = 'PCA')
clust <- igraph::cluster_walktrap(g)$membership
colLabels(sce.pbmc) <- factor(clust)

table(colLabels(sce.pbmc))
## 
##   1   2   3   4   5   6   7   8   9  10  11  12  13  14  15  16  17  18 
## 585 518 364 458 170 791 295 107  45  46 152  84  40  60 142  16  28  21

plotTSNE(sce.pbmc, colour_by="label")

8 找marker基因并解释结果

markers <- findMarkers(sce.pbmc, pval.type="some", direction="up")

这次看看cluster 7的marker基因

marker.set <- markers[["7"]]
as.data.frame(marker.set[1:30,1:3])
# p.value           FDR summary.logFC
# FCN1   4.881588e-137 1.644802e-132      2.715872
# LGALS2 3.729029e-133 6.282295e-129      2.191398
# CSTA   1.426854e-131 1.602548e-127      2.123738
# CFD    1.207067e-102  1.016773e-98      1.503274
# FGL2    8.567117e-93  5.773209e-89      1.358891
# IFI30   7.822561e-80  4.392889e-76      1.276366
# CLEC7A  6.052032e-79  2.913102e-75      1.109366
# MS4A6A  1.958033e-78  8.246744e-75      1.419465
# CFP     8.802407e-73  3.295426e-69      1.312191
# S100A8  6.193215e-70  2.086742e-66      3.431603

再和其他clusters对比

plotExpression(sce.pbmc, features=c("CD14", "CD68",
    "MNDA", "FCGR3A"), x="label", colour_by="label")

其实最后还是考验的背景知识:根据cluster7中CD14、CD68、MNDA表达量升高,同时又检查了CD16基因下调,推测cluster7是单核细胞

既然有UMI,就可以用第三种方法【在之前 的 2.3 考虑技术噪音中介绍过,如果没有spike-in】:可以考虑利用数据分布来表示技术噪音,例如只考虑技术噪音的话,UMI counts通常会呈现近似泊松分布

Zheng et al. 2017
10X Genomics官网也可以获取
3.3 挑选高变化基因