单细胞交响乐
  • 前言:我与《单细胞交响乐》的缘分
  • 1 准备篇:背景知识
    • 1.1 数据结构
    • 1.2 总览 | 从实验到分析
  • 2 积累篇:文献阅读
    • 2.1.1 综述 | 2019-单细胞转录组分析最佳思路
    • 2.1.2 综述 | 2018-单细胞捕获平台
    • 2.1.3 综述 | 2017-scRNA中的细胞聚类分群
    • 2.1.4 综述 | scRNA已经开发出超过1000款工具了,你用过几种?
    • 2.1.5 综述 | 2021-单细胞测序的微流控技术应用
    • 2.2.1 研究 | 2018-单细胞转录组探索癌症免疫治疗获得性抗性机理
    • 2.2.2 研究 | 2018-人类结直肠癌单细胞多组学分析
    • 2.2.3 研究 | 2020-单细胞分析揭示葡萄膜黑色素瘤新的进化复杂性
    • 2.2.4 研究 | 2020-COVID-19病人支气管免疫细胞单细胞测序分析
    • 2.2.5 研究 | 2020-原汁原味读--单细胞肿瘤免疫图谱
    • 2.2.6 研究 | 2021-多发性骨髓瘤发展过程中肿瘤和免疫细胞的共同进化
    • 2.2.7 研究 | 2021-多个组织的成纤维细胞图谱
    • 2.2.8 研究 | 2021-多组学分析肺结核队列的记忆T细胞状态
    • 2.2.9 研究 | 2021-CancerSCEM: 人类癌症单细胞表达图谱数据库
    • 2.2.10 研究| 2021-单细胞转录组分析COVID-19重症患者肺泡巨噬细胞亚型
    • 2.2.11 研究 |2021-单细胞转录组揭示肺腺癌特有的肿瘤微环境
    • 2.2.12 研究 | 2021-单细胞转录组揭示乳头状甲状腺癌起始与发展
    • 2.2.13 研究 | 2021-解析食管鳞癌化疗病人的单细胞转录组
    • 2.2.14 研究 | 2021-单细胞水平看骨髓瘤的细胞状态和基因调控
    • 2.3.1 算法|2020-BatchBench比较scRNA批次矫正方法
    • 2.3.2 算法 | 2021-scPhere——用地球仪来展示降维结果
    • 2.3.3 算法 | 2021-单细胞差异分析方法评测
    • 2.3.4 算法 | 2021-细胞分群新方法——CNA(co-varying neighborhood analysis)
    • 2.3.5 工具 | 2018-iSEE:单细胞数据可视化辅助网页工具
    • 2.3.6 工具 | 2021-MACA: 一款自动注释细胞类型的工具
    • 2.3.7 工具 | 2021-一个很有想法的工具——Ikarus,想要在单细胞水平直接鉴定肿瘤细胞
  • 3 流程篇:分析框架
    • 3.1 质控
    • 3.2 归一化
    • 3.3 挑选表达量高变化基因
    • 3.4 降维
    • 3.5 聚类
    • 3.6 Marker/标记基因检测
    • 3.7 细胞类型注释
    • 3.8 批次效应处理
    • 3.9 多样本间差异分析
    • 3.10 检测Doublet
    • 3.11 细胞周期推断
    • 3.12 细胞轨迹推断
    • 3.13 与蛋白丰度信息结合
    • 3.14 处理大型数据
    • 3.15 不同R包数据的相互转换
  • 4 实战篇:活学活用
    • 4.1 实战一 | Smart-seq2 | 小鼠骨髓
    • 4.2 实战二 | STRT-Seq | 小鼠大脑
    • 4.3 实战三 | 10X | 未过滤的PBMC
    • 4.4 实战四 | 10X | 过滤后的PBMC
    • 4.5 实战五 | CEL-seq2 | 人胰腺细胞
    • 4.6 实战六 | CEL-seq | 人胰腺细胞
    • 4.7 实战七 | SMARTer | 人胰腺细胞
    • 4.8 实战八 | Smart-seq2 | 人胰腺细胞
    • 4.9 实战九 | 不同技术数据整合 | 人胰腺细胞
    • 4.10 实战十 | CEL-seq | 小鼠造血干细胞
    • 4.11 实战十一 | Smart-seq2 | 小鼠造血干细胞
    • 4.12 实战十二 | 10X | 小鼠嵌合体胚胎
    • 4.13 实战十三 | 10X | 小鼠乳腺上皮细胞
    • 4.14 | 实战十四 | 10X | HCA计划的38万骨髓细胞
  • 5 补充篇:开拓思路
    • 5.1 10X Genomics概述
      • 5.1.1 10X Genomics 问题集锦
    • 5.2 CellRanger篇
      • 5.2.1 CellRanger实战(一)数据下载
      • 5.2.2 CellRanger实战(二) 使用前注意事项
      • 5.2.3 CellRanger实战(三) 使用初探
      • 5.2.4 CellRanger实战(四)流程概览
      • 5.2.5 CellRanger实战(五) 理解count输出的结果
    • 5.3 Seurat的使用
      • 5.3.1 Seurat V3 | 实战之2700 PBMCs分析
      • 5.3.2 Seurat V3 | 如何改造Seurat包的DoHeatmap函数?
      • 5.3.3 scRNA的3大R包对比
      • 5.3.4 Seurat两种数据比较:integrated vs RNA assay
      • 5.3.5 seurat 的几种findmaker比较
    • 5.4 Monocle的使用
      • 5.4.1 Monocle V3实战
    • 5.5 多个数据集的整合
      • 5.5.1 使用Seurat的merge功能进行整合
      • 5.5.2 如何使用sctransform去除批次效应
由 GitBook 提供支持
在本页
  • SOURCE
  • WHY?
  • HOW?
  • GET WHAT?
  • GET 1: Generating a tumor immune cell atlas
  • GET2: Tumor subtype classifier
  • GET 3: A resource for immune cell annotation
  • GET 4: Spatial localization of immune cells in tumor sections

这有帮助吗?

  1. 2 积累篇:文献阅读

2.2.5 研究 | 2020-原汁原味读--单细胞肿瘤免疫图谱

刘小泽写于2020.10.30

上一页2.2.4 研究 | 2020-COVID-19病人支气管免疫细胞单细胞测序分析下一页2.2.6 研究 | 2021-多发性骨髓瘤发展过程中肿瘤和免疫细胞的共同进化

最后更新于4年前

这有帮助吗?

探索一种新的文献阅读方法,可以更快去理解到作者的主体思路 下面我会从这几块介绍:SOURCE(文章来源)、WHY(作者为什么做这个项目)、HOW(作者怎么做的项目)、GET WHAT(作者得到了什么主要结论)

其中不会有特别复杂的词语和语法,而且我会尽可能把文章逻辑层级写清楚

SOURCE

Title: A Single-Cell Tumor Immune Atlas for Precision Oncology

Date: 2020-10-26

Team: Barcelona Institute of Science and Technology (BIST), Barcelona, Spain

Paper Link:

Data Link (Restricted Access):

Code Link:

WHY?

  • Immune microenvironments vary profoundly between patients and biomarkers for prognosis and treatment response lack precision

  • To pinpoint predictive cellular states of tumor immune cells and their spatial localization

HOW?

  • Analyzing >500,000 cells from 217 patients and 13 cancer types

  • Data projection: Seurat's anchor-transferring method

  • Using SPOTlight to combine single-cell and spatial transcriptomics data and identifying striking spatial immune cell patterns in tumor sections

  • ShinyApp (in progress) to project external data and to apply the immune classifier

GET WHAT?

GET 1: Generating a tumor immune cell atlas

  • Collected scRNA-seq datasets from 13 different cancer types, 217 patients and 526,261 cells

  • Immune cells clustered by cell identity rather than patient origin: integrated 317,111 immune cells using canonical correlation analysis => 25 clusters

GET2: Tumor subtype classifier

  • For Current: to establish a pan-cancer immune classification system

    • used immune cell type and state frequencies of the reference atlas as input for similarity assessment across the 13 cancer types

    • A hierarchical k-means clustering using immune cell proportions as features defined six clusters with largely different compositions (almost all cancer types were presented in each cluster)

  • For future: to facilitate the classification of immune profiles

    • trained an RF(random forest) classifier with the 25 immune cell population achieving a highly accurate classification

    • using the classifier, the pan-cancer immune classification system could be extended to additional cancer types

GET 3: A resource for immune cell annotation

To demonstrate the potential value of the atlas

  • The applicability of the atlas as reference across different cancer types

    • First: Project cells onto atlas using a reference-based projection (Fig. A)

    • Next: Typical clustering matching (Fig. B)

    • Third: Check correlation (Fig. C)

  • The applicability of the atlas as reference across species

    • two liver metastases derived from mouse CRC organoids

    • main subtypes and specific subpopulations could also be assigned using the human reference

GET 4: Spatial localization of immune cells in tumor sections

Spatial distribution of immune cells is important for ICI (immune checkpoint inhibitors) response

  • Single-cell reference atlas immune profiles + Spatial transcriptome data

  • SPOTlight : non-negative matrix factorization (NMF) based spatial deconvolution framework

  • Analysis of oropharyngeal squamous cell carcinoma (SCC)

    • cluster 1/2 (cancer cells) is surrounded by cluster 0 (stroma) and cluster 3 (immune cells)

    • cluster1/2 presented a similar immune infiltration pattern, with an enrichment of proliferative T-cells and SPP1 macrophages

    • cluster 3 presented a distinct immune infiltration pattern characterized by an enriched presence of (proliferative) B-cells

    • cluster 0 harbored regulatory T-cells and terminally exhausted CD8 T-cells and was specifically enriched in M2 macrophages and naive T-cells.

  • Analysis of ductal breast carcinoma (BC)

    • also get a cancer-specific regional distribution:

    • subclonal was directly associated with local enrichment of distinct immune cell states

  • Foresee the regional distribution of immune cell types to become an important feature for the prediction of immuno-therapy outcome.

https://www.biorxiv.org/content/10.1101/2020.10.26.354829v1
https://zenodo.org/record/4036020#.X5uoHlMzaHF
https://github.com/Single-Cell-Genomics-Group-CNAG-CRG/Tumor-Immune-Cell-Atlas
image-20201030111226885
image-20201030104337329
image-20201030112148461
image-20201030105413983
image-20201030104248148
image-20201030105045062
image-20201030112314187
image-20201030113032968
image-20201030132328526
image-20201030134113951
image-20201030133721287