4.5 实战五 | CEL-seq2 | 人胰腺细胞
刘小泽写于2020.7.20
1 前言
数据准备
library(scRNAseq)
sce.grun <- GrunPancreasData()
sce.grun
# class: SingleCellExperiment
# dim: 20064 1728
# metadata(0):
# assays(1): counts
# rownames(20064): A1BG-AS1__chr19 A1BG__chr19 ...
# ZZEF1__chr17 ZZZ3__chr1
# rowData names(2): symbol chr
# colnames(1728): D2ex_1 D2ex_2 ... D17TGFB_95
# D17TGFB_96
# colData names(2): donor sample
# reducedDimNames(0):
# altExpNames(1): ERCC
rowData(sce.grun)
# DataFrame with 20064 rows and 2 columns
# symbol chr
# <character> <character>
# A1BG-AS1__chr19 A1BG-AS1 chr19
# A1BG__chr19 A1BG chr19
# A1CF__chr10 A1CF chr10
# A2M-AS1__chr12 A2M-AS1 chr12
# A2ML1__chr12 A2ML1 chr12
# ... ... ...
# ZYG11A__chr1 ZYG11A chr1
# ZYG11B__chr1 ZYG11B chr1
# ZYX__chr7 ZYX chr7
# ZZEF1__chr17 ZZEF1 chr17
# ZZZ3__chr1 ZZZ3 chr1ID转换
2 质控
数据备份
然后进行过滤,并让函数注意批次信息
作图

【重点】发现了问题

最后把过滤条件应用在原数据
3 归一化

4 找表达量高变化基因
5 矫正批次效应
6 降维 + 聚类
降维
聚类

最后更新于